
AD-AIO 362 COLORADO UNIV AT BOULDER DEPT OF ASTRO-GEOPHYSICS F/G R/B
NUMERICAL TECHNIQUES FOR OCEAN FORECASTING.(U)
SEP GO E GRAHAM NGGGI47B.C-070

UNCLASSIFIED NL

UNIVERSITY OF COLORAO OU LDER

Department of Astro-Geophysics

I I- a
.

N'' I , ', p ,': .r h cr , vl(}te t Activity

D: ... I C

JUN 1 81981

' 0' 0CO 1 ,4- -7 -'--,706

C, ,rv1, , at Boulder

Cotltral Ct I t rv I l JLii ir'7P to 3(1 September 1980

P'rincipal I: +vest iqat John 1';. 1'ar*

IQ If f A StTr) -Geophys ic s
>.; nUi vet i Cty t (orloaIo

Bouldei , "0 30q

C) 303/4q2-656

i:fepo)rt pr!a reV by: 1;ric /(La I ,

L n a form requested by the Scient ific Offie , st.,', I iacsek, NCRDA

I :r : ..

Report is unclissiEied 'And avaiIable for unlimited circulation.

8w 617 005

2

[, e ne.,l c.?.,,. . rt -Ie ycr ib e the Inow cr the ocean are well

know - , tit for Marl. c Ie- of Interest. analytIc,1 - olit1o ns are not

,s-itle tecbuse of irI-ELuI ortoL darI or 5o1r ; i fI1 c t non-linezr1ties

Io the e,1LqI t 1os 0 . It 1s often possible to obt i i, osefu 1 rpv r ox1Mi te

n 1 ut 1 0, ;us n uMeL Cal techniq ues. However, foi- reasonab ly detai led

LuMe' 1a I models Verv l r qe aMOUntS of COMpLit' t1me are required.

-nd it bcomes i mperative to seek out the most efficient numerical

r1l .iithns. In the case where forecasts are tein.1 made on a re-il time

, S I th seuS of noni-op tIMlM scheMes MaY r esuL It in unccceptable

Ihi report dec rite -, r lass of tech. ues for the efficient treatment

o f odIes of water wIt h Irreul1ar boundaries. Realistic models of the

ocean state MtUSt 1,Cr hde idequate treatment of the boundaries, the

irreq.ular bottom topoiraph'y, the shape of the coastline and the

comrJ cati t qei:,metrv of ,r oups of isianis.

I adltl onal nLIeriF.,i. Methods usini a r ctTinquIar finite diff ' Pnce 4r id

aire suitable for exploratorv survevs of idealised poilpis where the aim

is to see why a part cul11r system respod5 , it does. aid 6i,;,t. effects

var;Et r,'s in the parameters of the problem and the fuo'L li ters t ave

a toe outcome. In urder to use these m odel for comp1 i(ited

4- met" ,. Iit is " neressary to use a ver"V fil,, f, rd, and o

cortcespdnji in increa 3e in conputer time, or suffer from reduced

The Net;>ods dFscribed here employ an irreqular trcanqulr qrid. Instead

of a reqular rectanqu I zr Irid, so it is possible to fit empirical

boundaries with hiqh precision without usinA prohibitively fine ,;rius

throu-ihot the domain of the So] ution. The penalty for this is a sl5i.ht

increase in the coMple'%ity of the algotithM.

TrInqu] ar qrids have been extensively used for elastic zind plastic flow

problems with the finite element Method (see for e':Fmple, Stran, and

Fix, 1973). These grids have also been used in Laqranqi;.n formulations

of the equations of hydrodynaMics by Crowley (1971). Boris et zil (1975)

and Fritts (1976), but the Lagranqian Method is Most suitable for flows

where the total deformation of the fluid is small. Eulerian

calculations have been performed by Sadourny et ail (1968), Willimson

(1968) and Thacker (177).

,7,7

I t o

4

2 IHE COE

this report describes toth a Melriodolqy for constructini and usinq

i eq u]-r trianqglar ,rids for solving ocean flow problems, and a set

o" !oIputer proqramsfor implementing, testinq and evaluatin9. the

Methodic,. The compIete set of subroutines is giyven later as an appendix.

Certain .etiilds of the t,sic alqorithm are best understood by reference

to the code i'celt. !Te code has been desiqned to te highly modular,

,o trzt some effort must be expended in describinq the interface to each

Mu JUi1 e.

To M,. IAI se the fl,. itl itv of the code, it has bee(i writter in a

superset of FG TIRAN w1,10. includes mcrc expansions. By the use of the

flie inLiusion macro, $INLLUDE, common block maintenance is ireatly

facilitated, wt. ile the bulk of the source code is reduced. Many

concilers support some form of file inc}itsion. The other use of macros

in1 the code is to 5L1c port parameters. Parameters Zre used for values

which Must take the torm of constants, for example to dimension an

arr9i . The values may need to be changed to produce different versions

of the code, for e>ample to be able to chanqe the number of qrid points

or to handle different hardware confiqurations. The easiest way to be

able to employ macros is to use a simpie pre-processor, which produces

as output a standard FORTRAN progrart, which any conpi Ii', ci ,n then

accept. Alternatively, a text editor may be used to perform the te>:t

5

substltutlons implied by the Macros.

!n the work ttat is described here, a sinple macro preprocessor based on

that of Kern hiq ,;i and Plauger (1976) was used.

The following predefined macros are assumed:

SMACRO(NAME,VALUE) Define t new macro.

$INCLUDE(filen;me) Include a file in the

source code at this

point.

SDELTOK Delete the next input

token, normally a iiew

line character.

The remi,ininq nacros are defined in the code azod hve the followin-I

uses:

SMAX Size of array S.

IVMAX Size of array IV.

ICMAX Size of array IC.

SERAS Size of array ERAS.

6

MAPMAXH Horizo-otal pzqe size in chzracter widths.

MAPMAXV Vertical I pale size in crr~ter hei-hts.

OUTLUN Lolical unit number for the output device.

CHARACTER type for character datum..

7I

3 !Hif. 'dA D

The Copu tat onz 1 4r i d c c,5 :1t s of ,n irrelu I ar tr jnm uI ar, tesseIat ion

wh ict, 1 5 ta bored to 2,p' ro>mi, teI y correspou, d to the shape of the ocean

ta-s i i nd any I ,nds that are to be model led. In order to be able to

coivenientkl handle ;uch a qvi .d on z, computer, we must forMulaIte F, data

structure thc-t represents the connectvitv .and the ieoetrv of the ..ria.

Fiict let us i'trodurCe two definitions.

A verte;% is defined is the point of iotersection of a nuMber of qrid

11 n P 5

A cell is i trianqulaZr re.11on bounded by three qrid lines.

Next we r us t ref er Eec 1f ica lv to the code (iivey, is an ppendix) in

order to s.-e r, w the diti strtucture i or3,,nised. Cell connectivitv

I1)OMit o10l i.. held I the :,,r av IC aio -erte . connectivity inforMilt1on

is held in the arrziv I .

An inte.er expresion I is ,.,id to point to it Lell If IC(I) Is the first

word des:r itin-i the cell, 51m a rly n e':presson J is s i,1 tr point to

a vertex if IV(J) is the first word describinq the vertex.

In addition, a number of words of real storage are associated with each

cell and verte., for 3to-zni physical quitilti;. These ,re held in the

8

arramv S.

The first two words of stora.e for vertices ,re cssu~ed to be the

coordinates of' the vertex. Where a vector field 1s to be represented,

adjacent words in 5 are used to hold the components of the vector.

As an example, consider the shallow water equations. The physical

storage layout associated with vertices is qiven below:

Word

0,1 Coordinates of the verte:'.

2-8 Weiqhts for lumpinq.

9-15 Transport weights in the -4-direction.

16-22 Transport weights in the y-direction.

23 Depth.

24,25 loMentum.

26-28 Momentum flux.

?9-31 LuMped depth and MoMentuM field A.

32-34 LuMped depth and momentum field B.

3 -37 Lumped depth and MoMentulM field C.

.5.39 Force.

40.41 Coriolis term.

The Meanings of these fields are described elsewhere.

9

The layout of connecti . ity ioformat ion for a cell is as -given below:

IC(I) Pointer to the S array.

!C11+1) Fointer to the Ist vertex that defines the cell.

IC(l+2) Pointer to the 2nd ver((x that defines th(cell.

IC(l+3) Pointer to the 3rd vertex that defines the cell.

The layout of connectivity information for a vertex is given below:

IV() Pointer to the S arpay.

IV(I+I) Number of adjacent vertices, N.

IV(1+2) Pointer to the tst adlacent vertex.

IV(+3, Pointer to the 2nd adjacent vertex.

IV(I+4) Pointer to the 3rd adjacent vertex.

IV(I+5) Pointer to the 4th adjacent vertex.

IVfl6) Pointer to the 5th adjacent vertex.

IV(I 7) Pointer to the 6th adjacent vertex, or

link to next boundary vertex.

The grid is assumed to have the siane topoloqv as j, tessalation of

equilateral triangles. Arbitrary bounJaries may be imposed sub iect to

the constraint that interior boundaries (islands) Jo no' have Zcute

anles. Since the -grid is deformed before use, this does not impose

any restriction on the actual shapes of islands that may be handled,

however the qrid would be more than usually deformed in the nei,,hborhood

of suchl acute reatures.

At this Point it is ipjropilte to exami~ie portions of the code in

detailI. ,o we will1 exzEmine the subroutines that play an important part

in constructi nq the gr id dati, structure.

HEXTOF is a subroutine that construIctS a grid with the safte topoloqy as

a hex~agonal reqion divided into triangular cells. It is called by:

CALL HEXTOP(N)

Each side of the hex:agon is divided into N se-iments.

Byv inspection, we may see that the grid has 6 N trizinqUlZar cells,

3(3N+1)N edges and 3(N+flN+l vertices.

HExrop generatP5 the pointers to vertices that a~re stored in IC, by

Usinq the subroutines GUC and GDC which ,Ienerate 'upward' and 'downward,

pointinq triani4ular cells. HEXIOP COunts the total number of ceils

alloc:iteo in NUMC, and the number of vertices in NUM'V.

Next, HEXTOP generates the links in each vertex data StrLOuctue, by

e;zmninq each cell iind makinq sure that all vertices surroUndirn a cell

are joined together by using the subroutine YLINK.

11

Final ly, -E x f ' deteoi ,,ps which verti. .s IIC on the :LuvLiary of the

reqi on ,v c o.int i,, the nut,her of zd iicent ver tizes. The boundarv points

Eire coot ined in a linked list dita structure.

HEXTOP is desiqned as a specific tool for qeneratin.; a class of

topologies that are useful for investi atinq the properties of iidvection

schemes zind in simulation; of any unbroken region that has approximately

circular boundaries. I v ddition HEXTOP illustrates the methodis that

may be used to generate even more complicated topologies, such as -.rids

with imbedded holes. From the human enqineerini standpoint, an

interactive computer s,'stem with a display screen and light pen would be

more convenient for qeneratin4 qrids fron real ocean naps.

GDC and GUC are cell generating subroutines for downward and upward

pointing cells in a triangular tesselation. A downward pointin,3 cell is

.enerated by the call:

CALL GDC(IP)

where IF points to the upper left hand vertex. It is IssuMed that the

followinq verte., IP+IYSIZ. ik the upper riqht hand verte;. znd that

the most recently defined vertex is the lower verter:. After qeneritinq

the cell-vertex links for a new cell, GDC returns after incrementinq IP

to the ne:t vertex.

GUC worl4s in a comp lie entairy fa slic .

A C dli

CALL GUCU(IF')

assu es thrt IF' points to the upper verte ot it cell. The most recent

verte i in assumed co be the lower left vertex, so GUC qenerate- a new

vertex for the lower riqht hand vertex and constructs a new set of

cell-verte.x pointers. IP is left unchanqed.

Bv alternatinq calls to GUC and GPC it is simple to construct an

arbitrary tesselation of trianqular cells, with aIl the requLired

pointers to define the topology of the qrid.

VLINK is a subroutine that ensures that two vertices are linked together

in the order qiven. It is called as follows:

CALL VLINK(IVA,IVB)

Verte.. IVA i,, e ,amined to see if it is already marked as haviln IVB as a

neighbor, If so VLINK exits without doing anythinq extra. Otherwise

the vertex count for IVA is incremented and a link to IVB is placed in

th nes:t available vertey link psition. To correctIv link two

vertices, two calls to VLINK are required:

13

r.LL V1- INK(IJA, IVP

CALL VLINK(JIVB,lIV,

The subroit ie VSTO assliqns storage sp-,ce to the vvtices from the array

of storaqe S. It is called as follows;:

CALL VSTO(IORIG,NU[,S)

The first word allocated is .(IORIG) and a total of NL41S words are

assi'3ned fo f eac , vertex. NWlS shoul be equal to the number of

physical variable fields required in the solutions of the equations of

hydrodynamics.

CIRBND is an example of a procedure that fixes the co-ordinates of the

boundary vertices, in this case by distributing them uniformly in a

circle. It may be called without any arguments.

CIRBND is used with HEXTOF' and SUGRID t., define ', circular ocean basin

for testinq purposes.

An assumption is made in CIRBND that all boundary vertices lie on a

sinmle exterior boundary, and that the links between boundzry vertices

follow serially around the boundary. This is true for HEXTOP, but need

not tie so for other topology qeneration subroutines. A more qeneral

14

boundzry f 1Xn; rout ne would be needed for Multiple boun.idaries, and

shouldprobatl v be embedded in the framework of an interactive conputer

ssteM, Zs discussed elsewhere.

VCDUMP Is a subroutine for printinq out the links associated with each

vertex and cell. It is called without any arquMent5. This r'OutLne has

pv-oved Useful as a da.3nu;tic during the ebuqqinq phase of new topology

•eneration si,'out .,.s. It is also 1 ivok.ed when code detects an

inccnsistency in the links, caused by .i logic error in the topology

routine, or More usually by storage corruption causej by array bound

overflow or subroutine argument inconsistencies, which traditionally

6re not detected by FORTRAN compilers.

The last subroutine in the grid buildinq suite is SUGRID, which

calculates the co-ordinates of all the interior vertices. It is called

as follows:

CALL SUGRID(NITER)

Interior vertices are moved so that the co-o.Jin tes of each vertex is

equal to the average of those of all its neighbors. This involves

solving a svstem of 2N linear equations, where N is the numiber of

interior vertices.

The equations are amenable to a reiaxation process of the most

strai,,htforward kind. A relaxation parameter RELiA is used to improve

the converence of the process.

Eri rical tests with simple qrids of various sizes have shown that RELPA

= 1.388 seems to be close to the optimum value.

A total of NITER iterations is performed, and for each iteratio , the

maximum displacement of a vertex: is printed, in order to illustrate the

convergence of the iterative solution.

On the basis of e;fperience with other relaxation nethods applied to

elliptical systems of partial differential equations, it is believed

that SUGRID is unconditionally stable for a finite range of RELPA.

The suite of subroutines that has been described above has been

specifically written to onst.uct the data structure for , circular

ocean basin, but simple modification to CIRBNt, for ex<aMple would

permit irregular quasi-c ivck!0ar basins to be treated. If the basin was

grossly dissimilar to a circle, or had a different topology, for

example. containing islands, then the routine HEXTOP would have to be

replaced. The following algorithm is proposed for the .eneration of

grids for real-world oceanographic simulations:

First assemble ; nuMber of equilateral triangles to ap:roxi atelv

represent the region of interest. For example, HEXFOP uses SIX

a

ti'ian,31es in the form of it hex qon to represent a circle.

The next step is to subdivide the trian-Iles into a tesselation of

m l er eu1later ,l tr anqles until it is estimated that the re zre

sufficient cells to resolve the solution structure that is desired.

Trianqular cells are next removed from the interior to represent islands

and from the exterior to better represent the ocean shore. The vertices

on the exterior and interior boundaric. are then assigned the actual

coordinates of associated points on the actual coastline.

The final step is to relax the interior points to obtain a qriJ with a

smooth transition of ce)l size. The whole procedure would best. be done

on a computer system under interactive command. A video graphics

display and a liqhtpen would be most appropriate for adjustin- the

coastline points in order make the grid is uniform as possible.

17

4 [HE ALIURIl IHli U 1" HYRODYAMICS

In MoSt fluid dvnamics Si1uMLtion=. the 4ust troublesome terms in the

euatioias are the ron -linear ones. ihe advection of a scalar field may

be used illustrate t re , qorithm thn t is used for more complicated

C Es eS.

The ..overn n,q equLt 1Z to fo, a scalar field Is:

Alterntivel;, tv Stokes theorem, we c :n s,y that for any region I,

bounded bv i, curve 5, we have

7Z-7

where ds is normal to the cut e , and is the zivera-e v ,lue of

in, the relion i.

In a finite representation of € usini a -.rid of points on a trionqu1jor

Mesh, it is ronvEnient to store the value of at the vertices of the

Ird , and to coon,,ie" F. reqicO surrounding each vertex which we will

l , flux Cell.

A t l., cell is an ir, eu la- and soMetiMes non-convex polygon that

-oot ins oniy one verteX. Each side of the polygon starts at the

-ent"o.d of a cell ad acet to the contained vertex and finishes on the

mid-point of a side of the cell that passes throuqh the contained

vertex. It is clear that io part of the reqion defined by the qrid lies

outside of all flux cells.

A flux cell surrounding a vertex with N neighboring vertices is a

poly,ion with 2N sides.

Averaqes of a variable w ithin a flux cell are termed "luMped' vaLes and

are associated with the contained vertex. If the values of the variable

are to be represented by its values at the vertices only, as is usual

for niny finite difference scheme, then we may uniquely approxiMate the

variable at any point by linear interpolation between the vertices of

the cell containinq the point. With this representation of the

variable, we may e:xactly calculate lumped values by inteqrating over

the flux cell. SiMilarly. the line integral above, may be exactly

evaluated around the flux cell.

Our advection equation is conservative in the lumped values of the

scalar variable. Fluxes are derived by first evaluating the unlumped

values at vertices, evaluatinq the non-linear flux terms at each vertex

19

aoid then re.tormin lt'iear interpolation.

Thos. we have zi si le, non-tntb ious algorithm for discretisine3 the

continuous equations of hvdrodynamics.

The line and surfice inteqrals of interpolated fields may be exactly

representeo by a weiqhted sum of vertrx values in the vicinity of the

region of inteqration. The weiqhts do not change with tine, so the

conplicated intelrais may be simplv evalLiated with a minimum of

coMput;,tional effort.

The subroutine CVLU calculates the weiqhts A, Bj required to calculate

the verte,; lumped vi ues Fi

Fi =A Fi +2 Fj

where i is vertex wtich neiqhbors vertex i.

Consider a verteN i ,nd a cell k. The field F i defined at i and the

other two vertice5 c- a ni q Such that the ce1l P is defined by the

trianqle ipq. If we c,o imAite F within by linear interpolation, we

Ray inteirate F withio the quadrilateral ip'gq' where q is the midpoint

of ip and p is the midpoint of ip. and q is the centroid of ipq.

This integral Is

20

P -=,, L 11/54 Fi + 7/108 Fp 1108 F.j2

where -k is the area of cell P.

The vertex luMped value of F zt 1 is the sum of k. over all

quadrilaterals as above which have i as z, vertex. The weiqhts A and Bj

may thus be seen to be

A 11/54

1'

whereiIk A k if is a vertex ot k, else L ik 0.

CVLW is invoked as follows:

CALL C'YLU(TIPOS)

IF'TS is a poi ,ter to a set of , var iat le loc ations which ie to contain

the values of A and Y.I.

The subroutine CTU computes the weiqhts A and BJ to c/,lcul,,te the line

integral T of a vector flux F around a flux cell surroundinq a vertex i,

21

where

I Fi.A +, FJ.JI
J

and j is a vertex neiqhborinq 1. I
A and BI are vectors associated with vertex i and a re stored with their

x-components at IPOS and IPDS+J respectively. The y-components are

stored 7 locations after the correspondinq x-component.

The flux cell around a boundary vertex is truncated by the ctual l

boundary, so that part of the line integral must be evaluated along

sections of the boundary, however, straiqhtforward use of linear

interpolation suffices to calculate A and Bj. The details of the

algorithm need not be described here, since the code itself serves to

define the Method.

The subroutine is called as shown:

CALL CTW(IPOS)

where, as before, IPOS is a pointer to the region of stor;gqe that is

to contain the weights. In this case 14 words are required to store the

vector weights.

22

The correctness of the jil.lorithM may be tested by the subroutine TSrCTU,

which evZ luates the line integrals for a flux of (1,0) and (0,1) for the

boundaries of the flu>: cells contai) in9 each vertex. Wi:thin the limits

of roundinq errors, the two inteqrals are zero.

TSTCTU is called as shown:

CALL TSICTU(IPOS)

where IPOS is the pointer to the weights generated by CIU.

LUMP is the subroutine that calculates the integral of a physical

variable field over the flux cell that surrounds each vertex.

The subroutine LUMP is invoked as follows:

CALL LUMP(IPOS,IFROM,ITO)

IPOS is a pointer to the set of weiqhts that have previously been

calculated by CVLW. and IFROM and ITO a re pointers to the source and

destination fields respectively.

The lumped variable is stored at location ITO after calculatinq

Fi A.Fi + -F,.P,
.1

23

where A aud B i are the weights and Fj is the value of the field at

vertex i. j is a neiqhbor vertex of vertex I.

UNLUMF Is a subroutine which is the formal Inverse of LUMP. It will

recover the original values of a field that has previously been smoothed

by LUMP. It is invoked as shown:

CALL UNLUMP(IPOS,IFROM,ITOERR)

IPOS, IFROM and ITO have the same meaning as in the above description

of the subroutine LUMP.

The system of linear equations for Fi, given Fi is solved by relaxation

Methods, with a final accuracy estimated to be on the order of ERR if

possible. otherwise an error message is printed.

Ihe subroutine ADVECT is called as follows:

CALL ADVECT(IPCN.IPCL,IPC,IPU,IPW,DT)

This subroutine performs the basic advection of a Iunmpe,J scalar field at

location IPCL using the unlunped velocity whose x- and v-components are

located at IPU and IPU+I. Transport weights are located at IPW. The

time interval for interation is DIT and the new scalar field is returned

24

to the location IFCN.

The subroutine ADVECT modifies a lumped momentuM field to ensure that

the corresponding momentum values on the .qrid boundaries are zero. This

is equivalent to Imposing a ri9id boundary condition at the edq.e of the

computational domain.

The subroutine STEP is called as follows:

CALL STEP(IPLN,IFULN,IPVLN,IF'LO,IPULO,IPVLO,IPL,

IPUL.IPVL, IP,IPU, IPV, IPUU,IPUV, IPVV,

IPFX,IPFY,IPFXL,IPFYL,IPU,DT,F,CF,

WSX,USY)

The STEP subroutine advances the fields of the physical variables one

time step for the shallow water equations. The values of the dependent

variables, height and horizontal momento, components, at the start of

the step are denoted with a suffix '0' for 'Old' while the vBlues

corresponding to the end of the step have a si.ffix 'N' for "New'. STEP

first unlumps the fields in order to calculate pressure and Reynolds

stress terms, then uses the transport algorithm and finally imposes the

boundary conditions.

The subroutine TRNSPT, which is called as shown:

25

CALL TRNSPI(INEW,IOLli,IFX,IFY,IPU,LIT)

evaluates the changes to a lumped field for a time step DT. The

oriqinal lumped field is located zit IOLP. The field after Modification

for the effects of transportation is returned to location INEW. The

transportation is effected by a flux field whose x- and y-components are

located at IFX and IFY respectively.

The shallow water equations contain several terms which are not of an

idvective nature. These terms are qenerally easier to treat in a

nuMerlical scheme than the non-linear advective terms. We will refer to

the non-advective terms as forcing terms. The subroutine FRF includes

the effects of the followinq forcing terms:

1) Frictional terM with a coefficient of friction

Cf and a linear dependency with the fluid

speed.

CorColis term with a parameter F.

3) An ex:ternally iMposed stre s (USX,WSY) which

maV be regarded ats representing the effects of

wind on the fluid.

|

26

The sutroit ine i cl led wi t, the ir.uMe ts

FRF (IFL, IFPUL, IPVI .I P, IPU,IP . IF'FX,IFFY, IFFXL,

IPFYL.DT,F,CF,WSX.,WSY)

I', IFU and IPV are pointers to urilumped depth and momentum components.

Pt, .FIUL c, nd IPVL -,re the I oci&t 1on3 of the corresponding lumped

fiplls. IPF. ,id IPFY adi fields used to store the combiied frictional

End ex te,'n, 1 stresses. IF'FXL ind IPFYL ore used to loca te the lumped

values of the previous two fields. Upon exit from FRF the moMentuM

fields ire modified to reflect the time integrated effects of the

forcinq terms over a time interval DT.

Two main proqrm ire included in the appendix. The first is used in

s1ple test solutions for the color equation, in order to examine the

stz,bilitv and accuracy of the basic advection algorithm.

The second suboutine 15 a driver for the shallow water equzitions and

includes calls to the .qr;iphics routines which are described in the next

section. The subprogram makes two calls to STEP, since the bi,sic time

,ifferencing scheme that is employed is the robust pseudo-backward Euler

Method.

27

i UUTPUT ROUTINES

In debu.gging the code And evaluatinq the perfor Jnce of the numerical

scheme that it embodies, qrarhical output is an invzlulble tool.

Simple listings of field values give little indication of the actul

behavior of the model beinq simulated, especially when an irregqular

qrid is used. A number of routines have been produced. which serve in

themselves as valuable aids, while at the same time formingi a set of

priMitives for More elaborate displays.

The OPRCON subroutine is a simple display procedure for producin.

contour plots of a field on it hardware device such as a lineprinter. It

is called as follows:

CALL QPRCON(IFLD,XMINXMAX)

IFLD is a pointer to the field that is to be displayed. A single

character, either a diqit or a plus or Minus sign is placed on the page

at a position corresponding to a vertex location. The character

represents the value of the specified field, with 0 correspondin.1 to

XMIN and 9 corresponding to XMAX. Intermediate values are represented

by an appropriate decimal value using a linear transfer function.

Values less that XMIN are shown by a minus sign while values larger that

XMAX are shown with a plus sign. If the grid is coarse, the display

will be sparse, but OPRCON has the advantage of representing both the

qrid structure and the field, so that iudgenents may be Made as to the

28

reality of features with scales near that of the basic qrid.

PRCON Is a subroutire that Is functionally sinilir to OPRCON, having

the s~ine arqument l1t, except that the field values for space between

vertices are also displayed. Each character space on the output page is

mapped into the qrid. and if the point lies within the boundzry of the

grid, the value of the input field, IFL, is evaluated by linear

interpolation. The running time for PRCON may be much larger thzn that

for OPRCON, especially when the the number of vertices is less that the

number of resolvable positions on the output page.

The routine CONPLT generates a contour line plot of the specified field.

It is called by means of:

CALL CONPLT(IFLD,CONVAL,N)

Contour values are printed for values CONVA(I), 1=1,N. CONPLT is

suitable for all types of contour plotting devices such as pen plotters

and electrostatic printer-plotters, since it makes use of only one

system dependent subroutine, LINE, for drawing a straigiht line

segment.

The DRAUV subroutine is called as follows:

DRAWV(IPL, IPUL,IPVL,IP,IPUIV,ASCALE, IPW)

29

The PRAWV sUbloutine qenoertes a displzy of the velocity field implied

by the lumped depth and momentum fields located at IPL, IPUL and IPVL.

The fields IP, IPU and IPV are used as workspace for calculating

unlumped values of the physical variables.

[he COMMON variable SCALE is used to transform from .rid roordinates to

plotter coordinates. After unlumpinq the fields, the velocity

components are extracted from the momentum fields. At each vertex of

the 4rid, an arrow is drawn with a length proportional (usinq the scale

factor ASCALE) to the velocity at the spezified point. No attempt is

made to draw Frrows that are so small as to be unresolvable.

DRGRID is a subroutine that has no arguments but thzit m;iy be used for

drawini the trian-ular .qrid on a scale similar to the other plottin,

displays. so that it mnay be used to overlay contour or vector field

representatioos.

IhO subroutine LIRCELL is similar to DRGRID, also havin. no arguments,

e. c ept that it draws the outline of the flux cells that are used for the

line integrals in Stokes' theorem.

EUPLO is a subroutine with the following calling sp,lience:

CALL EUPLOT(IP.ZMAX,ZMIN)

30

The EUPLUT subroutine Is used to qenerate a ,lot of the field located at

IP, alonq the line = 0. The actual plot is produced by printing

characters, in a way suitable for use with a linecrinter. rhe ma;:iMuM

and Minimum values that may be displayed on the page are given by ZMAX

and ZMIN respectively.

INIPOL is the basic interpolation s'jbroutine used by the other iraphics

subroutines for extractin. field values from arbitrary positions on the

,'d by means of linear interpolation. It is called as follows:

CALL INTPOL(IFL[,X,Y,Z,FAIL)

The postion specified is given by the roordinates (X,Y) and the value of

the field indicated by IFL is returned in the variable Z. If the point

lies outside the boundary of the irid, the logic7l variable FAIL is set

to betrue. INTPOL works by examininq each cell ii, turn until one is

found that contains the required point, so It is relatively tire

consuMing, especially when it is called many times, as in the

stbroutine PRCON.

Trie routine could be increased In speed by introduc iu, a relatively

coarse recta,.ular qrid and associatinq a linked list of trian-3ular cell

numbers with each rectanqular cell. The search could then be performed

on a Much shorter list, the particular list being determined by direct

31

conputation from X and Y. This Would be analoqous to hsh coded

searches in standard table look up problems, with the added advantage

that each list would be approximately the same size, so the look up

time woUld be both short and redictable.

INTRI is function that return a value of LOGICAL type. It may be

referenced by:

INTRI(X,Y,ICELL)

The returned value is only true if the point (XY) lies inside, or on

the boundary of the triangular cell number ICELL.

The subroutine fIAXMIN, which is called by:

CALL MAXMIN(IFLD)

prints out the MAXI MUM and minimun values of the field specified by

IFLD.

The function NEIH returns a LOGICAL value if the two vertices specified

by IF and 10 are neighbors when it is called by the sequence:

NEIGH(IP,IQO

32

The subroutine PRFLE'S, called by

CALL PRFLDS(I1,12)

prints out the values of all the fields in the range from II to 12 in

tabular form for each vertex. If needed the table is split into several

parts so as not to exceed the width of the lineprinter page.

The VCDUMP subroutine displays, on the printer, all the links

associated with the cell and vertex dat, structures. VCDUMP does not

take any arguments.

CONSRV is a subroutine called as follows:

CALL CONSRV(IFRON)

This diagnostic routine evaluates and prints the suM of the values of a

variable at each vertex of the grid. If the variable is a lumped field,

the su is the spatial integral of the corresponding unlumped field.

The routine has proved itself useful in code testing by evaluatinq the

integral of fields that should be formally conserved in time by the

systen of equations.

The COPY utility, which is called by:

L , •- OWN"

33

CALL COPY(ITO,IFRUM)

is used in many places throughout the code to transfer a physical

variable field from one location IFROM to another location ITO.

The subroutine FLDAV is a utility procedure which is called by:

CALL FLDAV(IPOSA,IPOSB,IPOSC)

It calculates the average of two fields indicated by IPOSP and IPOSC and

returns the result to the location IPOSA.

INITF is a subroutine used to set up initial fields of unit depth and

zero moMentum. It is called by:

CALL INITF(IP,IPU,IPV)

The subroutine SBROT imposes a velocity field appropriate for a solid

body rotation with an anqular velocity of OMEGA. The resulting

components are stored at locations IPOSU and IPOSU+1 when it is called

by:

CALL SBROT(OMEGA,IPOSU)

The TFIELD subroutine sets up a scalar test field which is a compact,

34

continuous and differentiable piecewise bivariate cubic, in the shape

of an off-center 'hump'. This field has proved useful for studying the

advection of a scalar field under solid body rotation. Although this

proble is analytically trivial since the field merely rotates with the

flow without changing shape, it is quite non-trivial computationally

and provides a powerful test for comparing the efficacy of different

numerical advection schemes. It may be invoked by the call:

CALL TFIELDCIFOS)

35

6 RESULTS

A sequence of numerical experiments were performed with the code dUrin-

its development in order to provide answers to the following questions:

1) Can a simple algorithm be developed which is

capable of solving the equations of hydrodynamics

with the physical variables approximated by values

on an irregular grid?

2) What are the limits of the stability of the

nuMerical scheme?

3) What is the accuracy of the scheme, especially in

the treatment of the dominant non-linear advective

terms?

4) What computing resources are required to use the

algorithm?

5) How does the algorithm compare to orthodox finite

difference schemes?

The answer to question 1) is clearly yes. The scheme that has been

described is certainly simple and elegant. Some slight complications

are inherent In using an irregular grid, but all the geometrical and

36

topological factors are resolved once at the start of a siMulation and

are incorporated in the weight terms and the cell and vertex links.

During execution the scheme is fully explicit, except for the simple

relaxation scheme that is used for 'unluMping" the physical variable

fields.

One especially satisfactory feature of the algorithm is that, for the

treatment of spatial derivatives at least, there are no arbitrary

decisions to be made in setting up the difference equations. Most

finite difference schemes are overdeterMined, in the sense that several

different representations have similar spatial order of accuracy, with

often no obvious Means of resolution. Also the present algorithm may be

readily generalised to more complicated situations.

The answer to question 2) is not capable of analytical solution, so we

nust perform experiments and Make cautious inferences. Most finite

difference schones that are explicit in time differencinq must have some

constraint on the maximum time step in order to satisfy stability

criteria. If these stability criteria are not satisfied then aI

computational mode' solution may be obtained. These frequently exhibit

hiqh spatial frequency oscillations and bear no resemblance to the

solutions of the underlying differential equations.

SoMe numerical schemes, such as the Dufort-Frankel scheme, while bein-

explicit in time, have no formal constraint on the tine step. However

Owosso

37

they achieve stability at the expense of introducin3 increasin amounts

of artificial diffusivity as the time step is made larqer. In a!ddition,

even schemes that Aake use of implicit time differencing, such as ADI

methods are still in practice limited by the need to maintain adequate

accuracy in the time integration.

A number of numerical tests have been performed both for the scalar

advection code and the shallow water equations. For semi-re-u lal' -rids

the maxinum time step for stabilitv was observed to be inversely

proportional to the mean inter-vertex spacing, while for more irregular

qrids the maximu stable time step was found to be more closely related

to the inverse of the minimum inter-vertex spacing. The latter result

is hardly suprisinr but it does mean that when constructing an irregular

grid to follow a coastline of vreat complexity, It pays 'not to use

qratuitouslv Small cells. However if the boundary points are reasonably

distributed along the coast, and the grid topology is appropriate to

the coMputational omain the use of SUGRID or its generalisation will

ensure that no excessively snall inter-vertex spacings are generated.

Overall, it has been found that the stability behaviour of the

triangular grid scheme is qualitatively ?nd quantitatively similar to

nore conventional rectangular grid finite difference schemes.

Sone answers to question 3) have been obtained by solving the color

equation for a solid body velocity field. Such an equation has a

38

triv iI analytical s i utioi so we may Investigate the ZIccuracy of the

scheme in its treatment of the all important advection term. For a

circlar basin of urit radius, a solid body rotation law and an initial

field deternined bv th.e sutroutine IFIELD, 3ood results were obtained

even with a very coarse qrid. For exanple with a typical inter-vertex

spacinq of .125, the bell shaped test field only suffered about 10%

error after a complete circuit of the grid. Since positivity is not

ensured tv the scheme, some small neqative and positive ripples were

observed, especially in the wake of the "hump", but these always

remained snall in magnitude. The algorithm has second order spatial

accuracy so in the liit of fine grids, error estimates may be easily

calcu lated.

Question 4 may be answered both on theoretical estinates and on the

results of the numerical experiments that have been performed. If we

take as a measure of the grid complexity sone number N, for e>:xample

NUMDIV as used in the code, or the reciprocal of the inter-vertex

spacing. Then the number of grid points for which calculations must be

performed is N**2. The solution of the system of linear equations for

the unlumpinq operation requires on the order of N**3 operations, since

it is iterative, and information must be propagated over the whole grid

in order to effect a solution. For each time step, the coMputational

effort has two factors, one proportional to the square of N and the

other proportional to the cube of N. For moderate values of N up to

about 20, the first term is dominant. For fine scale simulations,

39

however. the effort of the UNLUMP operation will dominate the solution.

ihe Maximum permitted time step varies inversely with N, so a complete

simulation will take a time that is proportional to the cube of N for

coarie grids and the fourth power for sufficiently fine grids.

There is no clear cut answer to the final question. Some cartesian ;rid 4

methods maintain 0*43 timing, and so for very fine grids, will be more

efficient than the irregular triangular grid Method. On the other hand,

irregular boundaries hay require excessively fine grids for the

cartesian grid Methods, so their theoretical edge may not be maintzained

in practice. It has been demonstrated that irregular triangular grid

methods can be applied to the equations of ocean flow, without undue

penalties in computer resources, or complexity of the final code.

40

7 REFERENCES

Boris, J.P., Hain, K. L. and Fritts, N.J., 1925: "Free surface

hydrodvnamics using a Lagrangian triangular mesh". Proc. First Intern.

Conf. NuMerical Ship Hydrodynamics, 20-23 October, David U. Taylor

Naval Ship Research and DevelopMent Center.

Crowlev, W.P., 19/1: "FLAG: A free-Lagranqe Method for numerically

siMulatinq hydrodynamic flows in two dimensions". Proc. Second Inter.

Conf. NuMerical Metrods in Fluid Mechanics. Springer Verlag.

Kernighan, B. U. and Plauger, P. J., 1976: "Software tools".

Adison Uesley, 338pp.

Strang, G. and Fix, F. J., 1973: "An analysis of the finite element

Method". Prentice-Hall, 306pp.

Sadourny, R., Arakawa, A. and Mintz, Y., 1968: "Integration of the

non-divergent barotropic vorticity equation with an icosahedral

hexagonal grid for the sphere". Numerical Simulations of Ueather and

CliMate Technical Report number 2. U.C.L.A.

Thacker, U.C., 1977: "Irregular grid finite difference techniques:

Simulation of oscillations in shallow circular basins". J. Phys.

Oceanography 7, 284.

41

Append i x

Typ ic a, set of macro definitions

$M4ACROl-,IDELTOKI)P
$IACRO(SMAX,65 10)-
$MACRO(lVtAX,1736V-
$IIACRD(ICIIAX, [668)'*
$tACRO(MAPMAXH,72)-
$MACRO(MAPIIAXV,22)'
$lACRO(SERAS,1)-
$MDAC RD(OUT LUN,5)-
SNACRO(INLUN,5)-
$MACRO(CHARACrERLOJGIcAL *I)-

42

Main program for di'ivinq the scalar advection code

SINCLUDE (CMAC.IIAC)$DELTOK
TYPE 1

I FORMIAT(N,DT')
ACCEPT *,N,DT
URITE(UUTLUN,2) N,DT

2 FORMAT(N,DT',14,F12.5)
CALL CrESr(N,DT)
STOP
END
SUBROUTINE CTEST(NUMDIV,DT)
IJRITE(l,96) NUtIDI4J,DT

96 FORMAT(N,DT-,16,F14.6)
OMEGA=6.41e3185
NSTEPSrl ./DT
CALL NEXTOP(NUMDIV)
CALL VS1O(1,30)
CALL CIRBND
CALL SUGRID(20)
IPLU=2
CALL CVLW(IPLU)
IPIJ=?
CALL CTU(IPU)

C CALL TSTCTIJ(IPU)
CALL ORDLEN
IP--23
IU=24
IV=25
IPL=26
IPN=27
IUL=28

CALL TFIELD(IP)
CALL SBROT(ONEGA,IU)
CALL LUMP(IPLWIJ,1.IPL)

C Remove the Cs from the nex~t three lines to imp~ose rigid b.c.
C CALL LUfP(IPLU,IU,IUL)
C CALL LUMP(IPLU,IV,IVL)
C CALL RIGBND(IUL,IVL,IU,IV)

DO 10 Iz),NSTEPS
CALL ADVECTCIPN,IPL,IP,IU,IPW,DT)
CALL CDPY(IPL,IPN)
CALL UNLUMP(IPLU,IFL,IP,1.E-5)
IF (MOD(1,1O) .ED. 0) CALL MAXMIN(IP)

10 CONTINUE
CALL MAXMIN(IP)
RETURN
END

43

SUBROUTINE GRDLEN
SINCLUDE(TRO.DCL)'
J~l
NSEG=Q
XMINxl .EIO
XMAX=O.
XtIEANzO.
DO 1 I:1,NUMV
JP=J+1
NY=IV(JP)
JA=IV(J)
X=S(JA)
Y=S(JA+1)
DO 2 K=1,NV
JK=JP+(
JC=IV(JK)
JB=IV(JC)
XX=S(JD)

D=SGRT((X-XX)*S2*(Y--YY)**2)
NSEG=NSE6+ 1
XMEAN=XPIEAN+D
IF (D .GT. XMAX) XHAX=D
IF (D .LT. XMIN) XNND

2 CONTINUE
I J=J+IVSIZ
XMEAN=XMEAN/NSEG

3 FORMAT(MIN,NEAN,MAX',3F12.5)
URITE(1,3) XtIN,XMEAN,XMAX
RET URNf
END
SUBROUTINE TFIELD(IPOS)
$INCLUDE(TRO.DCL)^
TCZO.

RC=.9
121
DO 1 IIzI,NUlV
K:IV(I)
X=S(K)
Y=S(K+1)
R=SQRT((X-XC)**2+(Y-YC)**2)/RC
cZO.
IF (R .11. 1.) C=(2.*R-3.)*R$R+1.
S(K+IPDS)zC

1 I=I+IVSIZ
RETURN

END

44

Main proqraft for the shallow iwnter equations code

SINCLIJDE(TMAC.MAC)$FELTI(K
DIMIENSION ERAS(SERAS)
DIMENSION CONVAL(IO)
LOGICAL PLOT
PLOT=.F AL SE
ASCALEIl.
DT=.O4
CALL INPUT(DT'DT)
X=1
CALL INPUT('NWIDIV ,X)
NUMDIV=X
X=l01
CALL INPUT(-'NSTEPS',X)
NSTEPS=X
X=10
CALL INPUT('NCONT ',X)
NCONT=X
DO 2 1=1,10

2 COtVAL(I)=I*.2-.1
CALL HEXTOP(MNDIV)
CALL 9STO(1,42)
CALL CIRBND
CALL SUGRID(20)
IPLIJ=2
CALL CVLU(IPLU)
IPU=9
CALL CTWCIPUI
CALL TSTCTU(IPU)
IP:23
IPU=24
IPV=25
IPUU=26
IPVV=27
I PVV=28
IPLAz29
IPULA=30
IPVLA=31
IPLO-32
IPULD=33
IPVLD=34
IPLC:35
IPULC=36
IPVLC=37
IPFX=38
IPFY=3Y
IPFXL=4O
IPFYL=4I
CALL INITF(IP,IPU,IPY)
CALL LUMP(2,IP,IPLA)

45

CALL. 1UMP(2, IF-UI PULA)
CALL LUMP(&',IPV,IPVLA)
CF=O.
CF=I.
CALL INPUW'CF....<.CF)
F=O.
CALL INPUT(FF)
USX= .3
USY=O.
CALL INFUTk WSX. . .. USX)
CALL INPUI(U'SY... ,WSI')
IF (PLOT) CALL F-L0TS(ERAS,900,5.5)
00 10 I=1,NSTEPS
IF (fOD(I-1.NCOW) .NE. 0) GO) TO 9
CALL UNLUMF1(2,IPLiA.IP'.1.E-5)
CALL aPRCON(IFP.0.,2.)
CALL EUFLOT(IP.2..O04
IF (NT.'1 CALL ORIGIN(t,.5,0.)
IF (PLOt) CALL ERAU(IPLA,IPUL-A,Ii:VLIA,IP,IPU,IPVASCAL-EF'LU)

9 CONTINUE
CALL STLP(IPLB,If'U-B,IPVLB,
I IPLA.IPULA,IPVLA.
2IFLA,IPULA,IPVLA,

3 IPIPU,IPV.IPUU,IPUV,Ipvv,
4 IPFX,IPFY,IPFXL,IPFYL,IPU,DT,F ,CF,USX,USY)
CALL IAXMIN(IF)
CALL MAXMIN(IPU)
CALL MAXMIN(IPY)
C4LL STEP(IPLC,IPULC,IPVLC,
1 IPLA,IPULA,IPVLA,
2 IPLIV,IPULI4,IPVLB.
3 IP,IPU,IPV,IPUU,IPUV,IPVV,
4 1PFX,1PFY,1PFXL. ZPFYL.ipIJ,DTr,F,CF,JSX,IJSY)
CALL COPY(IPLA,IPLC)
CALL COPY(IPULAIPULC)
CALL COPY(IPVLAIPVLC)

10 CONTINUE
IF (PLOT) CALL ORIGIN(5.5j,0.)
IF (PLOT) CALL ENDPLT
STOP
END
SUBROUWINE INPUT(STRING,X)
CHARACTER STRING(6)
URITE(OUTLUN,1) STRING,X

I FORMIAT(' Enter value for ",6A1,< Ferhaps ,1F12.3)
ACCEPT *,X
RE TURN
END

46

Commnon block TRG.DGL

COMMON ITRG/ S(SflAX),1Y(IVMAX).IC(ICMAX),
*SCALE, I

*NEU!J,NEIC,IVSIZ,ICSIZ,NUNC,NJNL',NDY,IBVF

47

Libra~ry of .iubroutinies for triangular grid codes

SINCLUOE(TRAC.NAC)SDELTOK
SUBROUTINE ADVECT(IPCN,IPCL,IPC,IPU,IPU,DT)

SINCLUDE(TRG.DCL)^
J~1
DO I I=1,NUtiV
K=IV(J)
NV:IV(J+l1
KIPC=(+IPC
KIPU=K+IPU
KIpu=K4IPU
KIPCN=K4IPCN
S(KIPCNV=S(X1PC)*(S(KPJ)*'S(I(IPIJ)+S(X(IPU+1)*SCX(IPU+?))
DO 2 IN=1,NV
JIN=J*1N
JP:IV(JIN+1)
KP:IV(JP)
KIPCN=K+IPCN
KPIPC=KP4 IPC
KPIPU=KP+IPU
K IPUI N=K +1P U +IN

2 S(KIPCN):S(KIPCN)+S(KPIPC)*(S(KPIPU)*S(KIPUIN)+
1 S(KPIPUI.1*S(KIPUIN47))
KIPCN=K+IPCN *
S(KIPCN1=S(K.IPCL)-DT*S(KIPCN)

I J=J+IVSIZ
RETUR.
END

SUBROUTINE CIRBND
$INCLUDE(TRG.DCL)^

DTH=6.2831 84/NDY
JzIDVF
TH:O.
DO I 1=1,NDv
IF (J ED. 0) GO TO ?
IF 4V(J) E.6 0T
IF IV(J) .E.)60T
S(K)uCOS(TI)
S(K+I)=SIN(TN)
TH=TN#DTH
I)IV(J+?)
IF (J .EQ. 0) RETURN

8 FORIIAW(CIRBND ERRDR',2I10)
9 URITE(OUTLUN,B) l,J

STOP
END

48

SUB~ROUTINE CONFli(IFLD,CONVAL,N)
SINCLUDE(TRG.DCL)-

DIMENSION CONVALCJ),F(3),KV(3),XY(3),YY(3),XLCZ),YL(2)
J~1
Do1 I 11NUlC
DO 2 JJ=1,3
jjj~J+JJ
JV:IC(JJJ)
IKA=IV(JV)
KVIJJ)=KA
KAIFLD=KA+IFLD
F(JJ)=S(KAIFLD)
XV(JJ)=S(KA) *SCALE

2 YV(JJ)=S(KA+14*SCALE
DO 4 NC=I,N
NI~o
F C =CONY AL (NC)
DO 3 JA=1,3
JB=JA41
IF (JB EQ. 4) JBDI
IF ((F(JA)-FC)*(FC-F(JB)) .LE. 0.) GO 10 3
NI=NI+1
ALPHA=(FC-F(JA))/(F(Jg)-F(JA;)
XL(N)=(1.-ALPHA)*XV(JA)+ALPHA*XV(JB)
YL(NI)=(1.-ALPHA)*YV(JA)+ALPHA*YV(JB)

3 CONTINUE
IF (NI .ED. 0) 60 TO 4
CALL LINE(XL,YL,2,1,O,O)

4 CONTINUE
I J:J+ICSIZ
RETURN
END

SUBROUTINE CONSRV(IFROM)
$INCLUDE(TRO.IICL)^

SUM:o.
J=1
DO I lz1,NUNV
K=4V(J)
KIFROI1=K+IFROM
SUuSUM+S (K IFROII)

I J=J+IVSIZ
3 FORMAT(FIELD',I5,' INTEGRAL',1F13.9)
URITE(OUTLUN,3) IFROM,SUN
RETURN
END

49

SUBEROUTINE COPY(ITO,IFROl)
$INCLUJL(TRG. DCL)^

J: 1
DO 1 I=1,NUNV
K=IV(J)
KITO=K+ITO
KIFROPI=K+IFROl

1 J=J+IVSIZ
RETURN
END

SUBROUTINE CTJ(IPOS)
LOGICAL NEIGH

I INCLUDE(CTRG. DCL)"
1=1
DO 1 II=1,NUMV

K=IV(I)
X=S(K)
Y=S(K+1)
KIPOS=K+IPOS
SIKIPDS)=D.
DO 2 J=1,NV
KIPOSJ=KIPOS+J

2 SCKIPOSJ)=O.
NVN1 =NV-1
DO 3 JP=1,NVM1
IJP1 =I+JP+1
NP=IV(IJPI I
KP=IV(NP)
PX=S(KP)
PY=S(KP+1)
JPP1 =JP.1
DO 3 JG=JP,NV
Ijol ~i+ja+i
Not1VCIJO1I)
IF (.NOT. NEIGH(NP,NQ)) GO TO 3
KO=IV(NO)
AX 25 CKG
QY=S(Kg+1)
Fg2(PX-X)*(GY-Y)-(PY-Y)*CGX-X)
916=..
IF (PG LT1. 0.) SIGS-1.
IF (IV(JP41) .EQ. 6) GO TO 4
DX*.5*SIGS(PY-Y)
DYX.5*SI6*(PX-X)
KJP=KIPOS+JP

50

WI PUS) =S KIPUS) +.75*IX
Sk9IPOS+')=S(KIPOS+7) +.?5tljY

S (K J P)rS(K JP) 1.25* DX
S(KJP+?):S(KJP+7)+.25*DY

4 IF (IV(Jg11) .E9. 6) GO TO 5
DX:-.s*SIG*(OY-Y)
EY=.5*SIG*(QX-X)
S (K IIOS) S K IPOS)+ . 5*DX
S(KIPOS+?)=S(KIPOS+7)+.75*DY
KJP=KIPOS+Jg
S(KJP)=S(KJP)+.25*DX
S(KJP+7)=S(KJP+?),.25*DY

5 CONTINUE
DX=-SIG*(PY-.5*(UYY)).!3.
D)=SIG*(PX-.5*(QX+X))/3.
[X=SIG*(QT-.5*(PY+Y))/3.

S(JIPOS)=S(KIPDS)+5.*(DX+EX)/12.
S(KIPOS+7)=S(KIPOS4?)+5.*(DY+EY)/12.
K JP=K IPOS+ .IP

S(KJP)zS(XJP)+DX/6.,S.SEX/12.
S(KJPt7)=SKJP*?)*DY/6.*5.*EY/?2.
KG=KIPOS+Jg
S(Kg):S(Xg)+5.*DX12.,EX/6.

S :g,)SC KO ?) 5. *OY/f 1. +EY/6.
3 CONTINUE

I=I+IvsIz
I CONTINUE
RETURN
END

51

SUBROUTINE CVLWt IPOS)
LOGICAL HEIGH

SINCLUDE(TRG.DCL)^
Almll .154.
A2z7./108.

DO 1 IIsI,NUIIV
NV=IV(I+1)
KsIV(I)
XuS(K)
Y=S(K.1)
KIPOS=K+IPOS
S(KIPOSi:O.
DO 2 J=1,NV
KJPDSJ=K+IPDS+J

2 S(KIPDSJ)=O.

DO 3 JPZI,NVNW
IJP=I+JP
NP=IV(IJP,1)
KP=IV(NP)
XP=S(KPJ
YP=S(KP+i)

DO 3 JGzJPP1,Nv
IJQZI+Jg

IF (.107. NEIGH(NP,NG)) 00 TO 3
KQSIII(NQ)
Xa=S(KG)
YgsS(KG+1)
DELTAz.5*A'S((XP-X),(YO-Y)--(YP-Y)s(XO-XI)
KIPOS=K+IPOS
S(KIPOS):S(KIPOS)+AV 4ELTA
KIPOSJPsKIPOS.JP
S(KIPOSJP).S(KJPOSJP) .AZ'DELTA
KIPOSJG=KIP0S4JO
S(NIPOSJQ)uS(KIPOSJQ)tA2 "DELIA

3 CONTINUE
ImI4IVSIZ

1 CONTINUE
RETURN
END

52

SUBROUTINE [DHAUV 1PL.IPUL,1PVLIP,IF'U,IPV,ASCALE,IPU)
SI NCL UDE (TRG. DCL*

ERR=l .E-4
CALL UNLUIP(IPO,IPL,IPERR)
CALL UffLU1P(PI,IPUL,IPU,ERR)
CALL UNLUMP(IF'U,IPVL,IPV,ERR)
J~I
DO 10 121,NUPIV
K=IV(J)
X XS(K)*SCALE
YY:S(X*1)*SCALE

P=S(KIP)
0;:S(XIPU)/P*SCALE
KIPV=K+IPVt
VPS(KIPV) IP*SCALE
UV=SQRT (U*Ij+V*V)
IF (UV .LT. .01*ASCALE) 90 TO 10
DX=ASCALE*U*.5
BY=ASCALE*V*. 5
X(1)ZXX+DX
X(2)=XX-DX
1(1)zYY+DY
Y(2)=YY-DY
DX=.4*DX
UY=.4*DY
X(3)=X(1)-DX-DY
Y(3)=Y(1)-DY+DX
X(S1ZX(1)-DX+DY
Y(5)=Y(1 1-DY-DX

X(4)=X(11
CALL LINE(X,Y1 2.1,0,0)
CALL LINE(X(3),Y(3),3,1,0,O)

10 J=J+IVSIZ
RETURN
END

SUBRjOUJT INE DRCELL
SINCLUDE(TRG .DCL)'

DIMENSION X(.?),Y(2)
J=l
DO I I-I ,NUMV
K =I V(J)
X(l)=S(K)*SCALE
Y(1)=S(K+1)*SCALE
CALL SYI OL(X,Y,.5,2,0.,1)

I J=J+IVSIZ
J=1
DO 2 I=1,NUMlC
JA=IC(J+1
JB=IC(J+3)
JC=IC(J+3)
KA=IV(JA)
KB=IV(JB)
K C=IV CiC)
XA=S(KA):vSCALE
YA=S(KA+1)*SCALE
XB=S(KB)*SCALE 1
YB=S(KB+1)*SCALE
XC=C KC) *SCALE
YC=S(KC+1)*SCALE
XG=(XA*XB+XC)/3.
YG=(YA+YB+YC) /3.
X(1)=XE
Y(1)=YG
X(2)=.5*(XA+XB)
Y(2)=.5*(YA+YB)
CALL LINE(X,Y,2,1,O,O)
X(2)=.5*(XD+XC)
Y (2)=.5 *CYB + YC)
CALL LINE(X.Y,2,1 ,O,O)
X(2):.5*(XC+XA)
Y(2)'=.5*(YXtYA)
CALL LINE(X,Y,2,1 ,O,O)

2 J=J+ICSIZ
RETURN
END

54

SUBROWlINE DRGRID
S INCLUDE (TRO. DCL)

DIMIENSION X(2),Y(2')
J=1
DO 1 I~1,NUflV
K=IV(J)
NV=IV(i+lI
X(1)=S(K)*SCAl-E
Y(1)=S(C+l)'SCALE
DO 2 IP=1,NV
JIP:J+IP
JP=IV(JIP+1)
IF LIP .GT. J) GO TO 2
KP=IV(JP)
X(2)=S(KP)*SCALE
Y(2Y=S(KPt1)*SCALE
CALL LINE(X,Y,2,1,O,0)

2 CONTINUE
1 J=J+IVSIZ
RETURN
END

SUBROUTINE EUPLOT(IP,ZMAX,ZMIN)
SINCLUDE(PAGE.DCL)^

LOGICAL FAIL
CHARACTER ISP,IS1AR,IVERT,IHOR
DATA ISP/' '/,ISTAR/-*'/,IVERT/':'/,IHOR/'_-/
DO 1 J~1.flAPMAXV
['0 21 I=1,MAPMAXH
IiIAP(I,J)=ISP
IF (I .EQ. 1 .OR. I .EQ. MAPMAXH) IMAP(I,J)=IYERT
IF (J .EQ. 1 .OR. J .EQ. MAPMAXV) INAP(I,J)=II1OR

2CONTINUE

I CONTINUE
Az2./(MAPNAXH-1 .)
B=-1.-A
C=(MAPM4AXV-1.)/(ZMIN-ZhAX)
D=1 .-C*ZMAX
DO 3 I=1,MAPflAXH
X=A*I+B
CALL INTPOL(IP,X,O.,Z,FAIL)
IF (FAIL) GO TO 3
J=C*Z+D
IF (J .LT. 1 .OR. J SGT. MAPMAXV) GO TO 3
IMAP(I,J)=ISTAR

3 CONTINUE
4 FORMAT(-1',/,(5X,MAPMtAXH Al))
URITE(OUTLUN,4) IMAP
RETURN
END

55

SUBROUTINE Fl-.AV(IFOSA,IP0SB,IPOSC)
SINCLUDE(TRG.DCL)-

JzlI

K=IV(J)
KIPOSA=K+ IPOSA
KIPOSB=K+1PO B
IIPOSC=K+IPOS.'
S(KIPUSA)=.5*(S(KIPOSD)+S(KIPDSC))

I J=J+IVSIZ
RETURN
END

SUBROUINE FRF(IPL,IF:'UL,IPVL,1P,IPU,IPV,IPFX,IPFY,IPFLI'FYL,
DT,F,CF,USX,USY)

SINCLIJDE(TRG.DCL)'
CALL UNLUMiP(2,IPL,IP,l.E-2)
CALL UNLUMP(-,,IPUL,IPU,I.E-2)
CALL UNLIUMP(2,IPVL,IPtJ,I.E-2)
J~1
PO 1 I=1,NUNV
IF (IV(J+1) .NE. 6) 60 TO 1
K=IV(J)
KlPzK+IP
P=S(KIP)
KIPU=K+IPU
U S K I PU) /P
KIPYJ=K+IPV
V=5(KIPV)/P
UY:SQRT(CU*U+V*V)

IsIPFY: 1PKIPFX=K+IPFX .
S(KIPFY)=(USY-CF*4*UV)*P

1 J=J+IYSIZ
CALL LUMP(2,IPFX,IPFXL)
CALL LUIP(2,IPFY.IPFYL)
J~ I
DO 2 I=1,NUMV
K=IV(J)
Al 1l.
Al 2=-DT*F
A21:D1*F
A22=1.
KIPFXL=K+IPFXL
4IPUL=K+IPUL
B1=D7*S(KIPFXL)+S(KIF*UL)
KIPFYLZK4XPFYL
KIPVL=K+IPVL

56

BI=DT*S (KIPFYL)+S(KIPVL)
D=A1)*A22-A1 i*A21
S(KlPUL)=(B14A22-A12*B2)/D
S(KIPVL)-(A1I*32-31sA21)ID

2 J=J+IVSIZ
RETURN
END

SUBROUTINE Gt'C(IP)
$INCLUDE(TR6.DCL)'

IC(NEUC+1)=IP
ICC NEJCQ~) =IP+IVSIZ
IC(NEUC+3)=NEUV-IVSIZ
IF=IP+IySIZ
NEUC=NEUC4ICSIZ
RETURN
END

SUBROUTINE GUCM P)
*1IECLVDEt 7R6.D[L)^

IC(NEUC+1)=IP
IC(MEVC+2)=NEJV
IC(NEUC+3)=NEIJV-IVSIZ
t#EVV=NEUV41IVSIZ
NEUC=NEUC+ICSIZ
RETURN
END

57

SUBROUTINE HEXTOP(N)
SIiNCLUDE(TRG.DCL)

SCALE=4.
DO 100 I=1,ICHAX

100 IC(I)=O
DO 101 I=l,1VNAX(

101 IV(I)=0
NEWC=1
!VSIZ=8
ICSIZ=4
I P= 1
NEUV=1 +(N+2)*IVS1Z
IU=N
DO 1 I=1,N
DO 2 J=1,IU
CALL GUC(1P)

2 CALL GDC(IP)
CALL GUC(IP)
IP=IP+IVSIZ
NEUV=NEUV+ IVSIZ

1IU=IIJ+1
IU=Iu-1
DO 3 11I,N
DO 4 J=1,IU
CALL GDC(IP)

4 CALL GUC(IP)
CALL ODC(IP)
IP=IP+IVSIZ
NEIJV=NEUY+IVSIZ

3 IU=IU-1
NEUV=NEIJV-IVSIZ
NUMC=(NEUC-1)/ICSIZ
NUflV=(NEUV-1)/IVSIZ
URITE(OUTLUN,5) NUMC,NUMVI

5 FORIIAT(Allocated cells and verticesl,2110)
JC=1
DO tO I=1,NUIC
IVA=IC(JC+1)
IVB=IC(JC+2)
IYC:IC(JC+3)
CALL VLINK(IVA,IVD)
CALL VLINK(IVB,IVC)
CALL VLINK(IVC,IYA)
CALL YLINIC(IVD,IVA)
CALL VLINK(IVC,IVB)
CALL 'LINK(IVA,IVC)

10 JC-JC+ICSIZ
IP21
DO 20 Iz1,NUMY
IF (IYCIP+I) L1T. 6) 60 TO 21

20 IPzIP.IYSIZ

58

22 FORMAT(' NO BOUJNDARY POINTS')
IJRI IE(OUILUN,22)
ST OP

21 ID=IP
IBVF=10
IP:0

27 IV(IB+7)=IP
NV:IV(18+1)
DO 23 I=1,NV

JIIt 1811

IF (J EO. IP) 60 '10 23
IF (J EQ. IBVF) GO TO 25
IF (IVCJ+1) .11. 6) GO TO 24

23 CONTINUE
26 FORMAT(BOUNDARY ERROR')

VRITE(OUTLUN,26)
CALL VCDUMP
ST OP

24 NDV=NDV.1

60 T0 27
30 FORMAWC NUMBIER OF BOUNDARY VERTICES-,I10)
25 ORITE(OUTLUN,30) NOY

IOVF=I9
RETURN
END

SUBROUTINE INITF(IP,IPU,IPV)
S INCLUDE(CTRO. DCL?"

DO I I=I,NUNV
K:IV(J)
KIPmK+IP
S(KIP)zt.
KIPU=K+IPU
SCKIPIJ)=O.
KIPV*K+IPV
S(KIPV)ZO.

1 J~J+IVSIz
RETURN
END

59

SUBROUTINE INTPOL(IFLD,X,Y,Z.FAIL)
S INCLUDE(CTRG. DCL)^

LOGICAL FAIL
FAIL=. TRUE.
ICELL~1
DO 10 I=1,NUNC
IP=IC(ICELL+1)
IQ=IC(ICELL+2)
IR=IC(ICELL+3)
J P I v(IP)
Jo=IV(10)
JR=IV(IR)
XP=S(JP)-X
YP=S(JP+1)-Y
XQ=S(JQ)-X
YQ=SCJQ+1)-Y
XRzS(JR)-X
YR=S(JR+1)-Y
PQ=XP*YQ-YP*XQ
UR=XQ*YR-YG*XR
RP=XR*YP-YR*XP
IF (PG*RR .LT. 0.) GB 'TO I
IF (QR*RP .LT. 0.) GO TO 1
IF (PG*RP .LT. 0.) GO TO 1
JPIFLD:JP+IFLD
ZP=S(JPIFLD)
JOIFLD=JD+1FLD
ZgzS(JQIFLO)
JRIFLD:JR+IFLD
ZR=S(JRIFLD)
D=XP*(YG-YR)-YPt(XQ--XR)+XQO~YR-Y;tXR
ZZ(XP*(YQ*ZR-ZO*YR)-YP*CXQ*ZR-ZG*XR)+ZP*(XO*YR-YO*XR))/D
FAIL-.FALSE.
RET UF L

1 ICELL=ICELL.ICSIZ
10 CONTINUE

RETURN
END

60

FUNCTION INTRI(X,Y,ICELL)
SINCLUDE(TRG. DCL)^

LOGICAL INTRI
IP:IC(ICELL+1)

IRSIC(ICELL+3)
JP=IV(IP)

JR=IV(JR)
xP=s(JP,-x
YP=S(JP+1)-Y
XQ=S(Jg)-X
YRzS(JOgt)-Y
XR:S(JR)-X
YR=S(JR*1)-Y
PGZXP*Yo-yP*XO
QR=XQ*YR-YGeXR
RP=XR*YP-YR*XP
IF CPO*QR .LT. 0.) 00 TO I
IF (QR*RP .LT. 0.) 60 TO 1
IF (PG*RP .LT. 0.) 60 TO I
INTRI-. TRUE.
RETURN

I INTRI:.FALSE.
RETURN

END

61

SUBROUTINE LUMP(IPOSIFROM,IT0)
S INCLUDE(CTRG. DCL)-

J:1
DO 1 11I,NJNV

K=IV(J)
NV=IV(Jf41
KITO=K+ITO
KIPOS=K+IPOS

IIFROM=K+IFROM

S(KITO)=S(KIPOS)*S(KIFROI)
JINI=J+IN41
JP:IV(JIN1)
KP:IV(JP)
KIPIN=KIPOS+IN
KPIFR=KP+IFROl

2 S(KITO)=S(KITO)+S(KIPIN)*S(KPIFR)
1 J=J+IVSIZ
RETURN
END

SUBROUTINE MAXMIN(IFLD)4
SINCLUDE(TRG.DCL)'

XHAX=S(IFLD+1)
XMIN=XMAX
J~1
DO 1 I=1,NUNV
K=IYCJ)
IIFLD=K.IFLD
X=S(KIFLD)
IF (X AGT. XMAX) XHAX=X
IF (X ALT. XMIN) XIIIN=X

1 J=J+IVSIZ
2 FORMAWC MAX,tIN',2F10.6)

URITE(OUTLUN,2)XNAX,XHIN
RETURN
END

62

FUNCTION NEIGH(IP, 10)
SINCLUDE(TRG.DCL)'

LOGICAL NEIGH

DO I I=1,NV
IPI1:IP+I+1
IF (IV(IPI1) .EQ. 10) 00 TO 2

1 CONTINUE
NEIGH=.FALSE.
RETURN

2 NEIGH=.TRUE.
RETURN
END

SUBROUTINE PRCON(IFLD,XMIN,XIAX)
LOGICAL FAIL
DIMENSION ICON(13),LIN(RAPHAXH)
DATA IO/-,0,1,2,3''5,6,?,8,9,4,

BX=-(flAPHAXH+1)/MAPMAXH
BT=(MAPMAXV+.)/NAPHAXV
URITE(OUTLUN,5)
DO 1 J=1,MAPMAXV
Y=-J/(MAPHAXV/2.).BY
DO 2 I=1,MAPflAXH
X=I/(MAPMAXH/2.)+BX
R=X*X+Y*Y
K=13
IF (R .GT. 1.) GO TO 3
CALL INTPOL(IFLD,X,Y,Z,FAIL)
IF (FAIL) GO TO 3
K=1O.*(Z-XMIN)/(XMAX-XMIN)
IF (K .LT. 0) K.-1
IF (K .GT. 10) K=10
K=K.2

3 LIN(I)=ICON(K)
2 CONTINUE
4 FORMATC3X,MAPMAXH All
URITE(OUTLUN,4) LIN

1 CONTINUE
5 FORMAT('1)

RETURN
END

63

SUBROUTINE PRFLDS(I1 ,I2)
S INCLUDE(CTRG. DCL)

DIMENSION V(10)
URITE(OUTLUN,4) 11,12

4 FORMAT(FIELDS',I4,' THROUGH'-,I4)
URITE(OUTLUN,4) 11,12
.J1
DO I Ic1,NUMV
K=IV(J)
NN=1
DO 2 N=I12
KN=K+N
V(NN)=S(KN)
NN=NN+1
IF CNN .LE. 10) GO TO 2
IRITE(OUTLUN,3) I,V

3 FORMAT(' -,18,10F12.6)
NN~1

2 CONTINUE
NN=NN-1
IF (NN .GT. 0) WRITE(OUTLUN,3) I,(V(N),N=1,NN)

1 JZJ+IVSIZ
RE T URN
END

SUBROUTINE OPRCON(IFLD,XMIN,XIAX)
CHARACTER ICON(13)

$INCLUDE(TRG.DCL)-
$INCLUDE(PAGE.DCL)^

DATAION-'',',2,,4, ',',8,9,+, I
DO 2 J=I,NAPNAXY
2o INAP(,)ICON(1
DO 2 I:,zNAPNAX
IVERTzl
DO I IlzI,NUNV
KK=IV(IVERT)
X=S(KK)
Y=S(KK.1)
KKIFLD=KKIFLD
Z=S(KKIFLD)
I= (IIAPAXH/2.)*X.IIAPMAXH/2.+..
IF (I .LT. 1) 1=1
IF (I .GT. MAPNAXH) IzNAPMAXH
jx-(MAPMAXY/2.)*Y+MAPMAXVI2.+1.
IF (J .LT. 1) J:l
IF (J SGT. MAPMAXV) JzMAPHAXV
XslO.e(Z-xNIN)/(XNAX-XNJN)
IF (K .LT. 0) I(:-1
IF (K SBT. 10) K*1O

64

K=K+2
INAP(I,J)=ICON(K)

I IVERT:IVERT+IVSIZ
3 FORMAT(-1',/,(5X,IIAPHAXH Al)
IRITE(OUTLUN,3) IiIAP
RETURN
END

SUBROUTINE RIGBND(IPUL,IPYL,IPU,IPV)
I INCLUDE (RG.DCL)^
CALL UNLUMP(2,IPUL,IPU,1.E-3)
CALL UNLUtlP(2,IPVL,IPV,l.E-5)
J=IBVF
DO 1 I:1,NBV
K=IV(J)
K IPU=l(.1PU
S(KIPU)ZO.
KIPVZK+IPV
S(KIPV)0O.

1 J=IV(J.7)
CALL LUMP(2,IPU,IPUL)
CALL LUMP(2,IPV,IPVL)
RETURN
END

SUBROUTINE SBROrT(ONEGA, IPOSU)
$INCLUDE(TRG.DCL)^

DO I11=I1,NUMV
KzIY(I)
X=S(K)
Y=S(K+1 I
II 1+ IVSI Z
KIPDSU=K.IPOSU
S(KIPOSU)z-Y*ONEGA

I S(KIPOSU+1)SXSONEGA
RETURN
END

65

SUBROUTINE STEP(IPLN IPULM,IFVLN IP-LO IPULO IP'JLG IPL IPUL,IPYL,
*IP,IPU,IPV,IPUU,IPUOIPVV,IPFX,IPFY,1PFXL,IPFYL,1PU,bT,
*F,CF,USX,USY)
SINCLIJDE (TRO.DCL)
CALL UNLUMP(2,IPL,IP,1.E-2)
CALL UNLUMP(2,IPUL,IPU,1.E-2)
CALL UNLUMP(2,IPVL,IPV,1.E-2)
JP1
DO 1 I11,NUNV
K=IV(J)
KIP=K+IP
KIPU=K+IPU
KIPV=K+IPV
K IPU U=K +IPU U
KIPUV=K+IPUV
KIPVY=K+IPVV
P=S (K IP)
U=S(KIPU)/P
V=S(KIPV)/P
S(KIPUU)=P*(U*U+.5*P)
S(KIPUV)=P*U*V
S(KIPVV)P*(J*V+.5*P)

I J=J+JIJ5IZ
CALL TRNSPT(IPLN,IPLO,IPU,IPV,IPU,DT)
CALL TRNSPT(IPULN,IPULO,IPUU,IPU,IPJ,DT)
CALL TRNSPT(IPVLN,IPVLO,IPUV,IPVV,IPU,DT)
CALL FRF(IPLN,IPULN,IPYLN,IP,IPU,IPV,IPFX,IPFY,IPFXL,IPFYL,DT,
*F,CF,USX,IJSY)
CALL RIGBND(IPULN,IPVLN,IPU,IPV)
RETURN
END

66

SUBROUTINE SUGRID(MITER)
$INCLUDE(TRO. DCL)-
RELPA=1 .388
DO 9 MI=1,NITER
J~1
CHNAX=O.
DO I I=1,NUNV
NV=IV(J+1)
IF (NV ALT. 6) GO TO I
X~0.
'VzO.
DO 2 K=1,6
JKI =J+I+K
JNzIV(JKI)
JS=IV(JN)
X=X+S(JS)

2 Y=Y+S(JS+1)
JS:IV(J)
X05S(JS) 1
YO=S(JS+1)
X=X/6.
Y2Y/6.
CH=SURT((X-XO)**2+(Y-YO)**2)
IF (CH .6T. CHHAX) CHHAX2CH
S(JS)zRELPA*X+(1 .-RELPA)*S(JS)
S(JS+t)=RELPA*Y.(1-RELPA)*S(JS+1)

I J=J+IVSIZ
8 FORNAT(MAXIMUM DISPLACEMENT',1FI2.8)

URITE(OUTLUN,8) CNMAX
9 CONTINUE
RETURN
END

SUB ROU I INE T RNSFHITN!-,.UIJL 1, 11AI F II PU.DT
SINCLU LIE T RD.DCL)

K:IV(J)
NV=IV(J+I)
KINEW=K+INEW
SIF X=K +IF X
KIPU=K+IPU
KIFY=KtIFY
(K INEU)=SK IFX)* KIP) +S(KIFY)* KIPU+7)

DO 2 IN=1,NV
JIN=J4IN
JP=1V(JIN+1)
KP=IV(JP)
KP [F X=KP.IFX
K IPU I N =KI P + IN
K P1FY K P +IF V

2 S(KINEU)=S(KINEU)+S(XPIFX)*S(KIPUIN)+S(KPIFY)*tS(KIPUIN+7)
XI OLD=K +IOD
S(KINELJ)=S(KIOLD)-DT*S(KINEY)

I J=J+IYSIZ
RETURN
END

SUBROUTINE TSTCTU(IPOS)
SINCLUDE(TRG.DCL)'
URIrE(OUTLUN,4)

4 FORMtAT(' TEST T-UEIONTS'/8X,'I',8X,'NV',18X,'TEST X',14X,-'TEST Y-)
1=1
DO I 111I,NUNV
NV=IV(I+l)
K=IY(I)
KIPOS=K+IPOS
X=S(KIPOS)
Y=S(KIPOS+I)
DO 2I J1I,NV
KIPOSJ=KIPOS+J
X=X+S(KIPOSJ)

Y=Y+S(KIPOSJ+7)
2 CONTINUE
3 FORMAT(lX,2110,9F0.O.?

WRITE(OUTLUN,3) I,NV,X,Y

RETURN
END

SUP-,O2i 1N UNLU il"(Ii:LS IF R'0 I TO,[RR
$Ir4CLUt'E(1kG4.DCLV^
RLLPA=1 .3
NITER=25

CHMAX=0.

DO 10 11I,NUMV

K=IV(J)
KITO=K+ ITO
SULD=S(KIlO)
lR IF ROM=K +IF RD
S(KITO)=S(KIFROM)
NV=1Y(J+l

110 12 IN=1,NV
JIN=J+IN
JP:IY(JIN+1)

KP=IV(JP)
KIPSIN=K+IPCS+IN
KPI IO=KP+ITO

12 S(KITO)=S(KITO)-S(KIPSIN)*S(KPITD)
KIPOS=K+IPOS
S(KITO)=S(KITO)/S(KIPOS)
CH=ABS(S(KITO)-SOLD)
S(KITO)=RELPA*S(K1TO)+(1.-REL-PA)*SOLD
IF (CHMAX .LT. CH) CHMAX=CH

10 J=J+IYSIZ

IF (LHMAX .LT. ERR) G0 TO 14
11 CONTINUE
13 FORMIAT(' MAXIMUM CHANGE IN UNLUMP ,1F12.8)

IRITE(OUTLUN,13) CHIIAX
14 CONTINUE

RETURN
END

6 C

SUEBHOUTINL VCDUfiF
$INCLUDE(TRG.DCL)

WRITE COUTLUN, 1)
1 FORMAT(CELL LIST')

DO 2 I=1,NUflC
JL=J+ICSIZ-1
URITEiOUTLUN,3) I,J, (IC(K),K=J,JL)

2 J=J+ICSIZ
3 FORMAT(IX,6I10)

J~1
4 FORMAT('VERTEX LIST')

URITE(OUTLUN,4)
DO 5 I=1,NUMV
JL=J+IVSIZ
IRITE(OUTLUN,6) I ,J, (IV(K),K=J,JL)

5 J=J+IYSIZ
RETURN
END

SUBROUTINE VLINIX(IVA,IVB)
SINCLUDE(TRG.DCL)^

NV=IV(IVA+1)
IF (NV .EQ. 0) 60 TO I
DO 2 I=1,NV
IVAII=IVAI+1 :
IF (IV(IVAII) .EQ. IVB) RETURN

2 CONTINUE
I IV(IVA+1)=NV+1
IVANV=IVA+NV
IV(IVANV+2)=IVD
RETURN

END

SUBROUTINE VSTO(IOR16,NUDS)
SINCLUDE(TRO.DCL'^

K4IORIG
J= 1
DO 1 I=I,NUMV
IV(J)=K
K:KNUDS

I J=J+IVSIZ
RETIIRN
E ND

DAT

FILMED

DIC

